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Abstract— Anti-debugging is the implementation of one or more 

techniques within computer code that hinders attempts at 

reverse engineering or debugging a target binary. Within this 

paper we will present a number of the known methods of anti-

debugging in a fashion that is easy to implement for a developer 

of moderate expertise. We will include source code, whenever 

possible, with a line by line explanation of how the anti-

debugging technique operates. The goal of the paper is to educate 

development teams on anti-debugging methods and to ease the 

burden of implementation. 
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I. INTRODUCTION 

Anti-debugging, when implemented properly, can be a 

significant deterrence to would be reverse engineers and 

software pirates. There is no foolproof solution to thwart the 

dedicated reverse engineer; however, making the task as 

arduous and difficult as possible increases the time and 

expertise required for full analysis of the binary application.  

Application developers should not be required to spend 

significant amounts of time understanding and examining the 

specifics of a software protection scheme. Straight forward 

implementation of a best of breed solution helps to achieve the 

aforementioned goals while leaving the developer additional 

time to implement features and other necessary application 

components. 

The majority of data on the topic of anti-debugging has 

been presented from the vantage point of a reverse engineer. 

Anti-debugging methods typically have been presented in 

assembly language dumps with minimal explanation as to the 

high level code constructs involved in the technique. Unless 

the developer is adept at reading and comprehending assembly 

language code, the anti-debugging method is 

incomprehensible and thus will not be implemented.  

The goal of this paper is to present a number of anti-

debugging methods in an easy to comprehend manner. The 

average developer should be able to read this paper, grasp the 

concepts described, and readily use the source code provided 

to implement a myriad of different anti-debugging methods. 

Education of the developer will lead to a stronger 

understanding of the basic anti-debugging methods that can be 

used to limit the effectiveness of a reverse engineer’s primary 

tool, the debugger. 

II. BACKGROUND TERMS AND DEFINITIONS 

The definition of debugging is the act of detecting and 

removing bugs in an application. Bugs exist in code due to 

syntactic or logic errors that make the program operate 

differently than intended. The vast majority of times, 

debugging is done with obvious intentions. The intent is 

typically to pinpoint the exact location that is causing an error 

in the program.  

Over time, debugging has become an overloaded term, 

taking on additional meanings. In the reverse engineering 

specialty of information security, debugging has come to 

mean the act of using a debugging tool on a target process to 

determine exactly what or how a piece of code operates. 

Debugging is especially useful in the area of malware analysis 

where a thorough understanding of how a piece of malicious 

code operates can help to develop strategies for detection and 

eradication. 

Finally, practitioners in the area of software piracy must be 

skilled at the nuances of reverse engineering and debugging. 

When popular new software is released, it is immediately 

attacked by reverse engineers in an attempt to remove any 

copy protection that may have been put in place by the 

development team. While there is no way to completely 

protect software from a skilled reverse engineer, it is possible 

to layer on defenses that can fill the road with potholes and 

make the trip to cracking your software a much bumpier ride. 

It is with these concepts in mind that we will discuss anti-

debugging. Anti-debugging is an implementation of one or 

more techniques, within the code and thus compiled binary 

file, which hinders the debugging or reverse engineering 

process. These anti-debugging methods typically fall into one 

of six major categories: API based anti-debugging, exception 

based anti-debugging, direct process and thread detections, 

modified code detection, hardware and register based 

detection, and timing based anti-debugging.   

We will not be describing anti-dumping via on-disk PE 

modification techniques and will only focus on the Microsoft 

Windows operating system in an attempt to limit the scope and 

length of this paper. These additional areas of research may 

be covered in a supplemental paper at a later date. 

III. API BASED ANTI-DEBUGGING 

API based detections use Win32 function calls to detect the 

presence of a debugger and act accordingly. Specifically, 

these detection mechanisms do not directly access memory 

regions or index sections of memory, instead relying upon the 

functionality of both documented and undocumented 

Microsoft API function calls. The majority of the time, the 



 

 

presented API based detection mechanisms will rely upon 

underlying operating system calls to directly access memory 

and as such there may be overlap between the methods 

outlined in this section and other methods detailed later in the 

document.   

A. IsDebuggerPresent 

The first anti-debugging method that most new reverse 

engineers discover is the Microsoft API call, 

IsDebuggerPresent.  This function call analyses the running 

process environment block (PEB) and looks at the 

DebuggerPresent flag. The function returns the value located 

at this flag. If the return value is zero, there is no debugger 

present; however, if the value returned is non-zero, a debugger 

is attached to our process. 

 
if (IsDebuggerPresent()) { 

   MessageBox(NULL, L"Debugger Detected Via 

IsDebuggerPresent", L"Debugger Detected", MB_OK); 

} else { 

   MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

Appendix: isDebuggerPresent.sln 

B. CheckRemoteDebuggerPresent 

Conceptually similar to the IsDebuggerPresent method, the 

CheckRemoteDebuggerPresent function checks the PEB 

block of the target process for the BeingDebugged flag. The 

CheckRemoteDebuggerPresent API call takes two parameters, 

the first of which is a handle to the target process, and the 

second being the return value indicating if the target process 

has a debugger attached. This API call requires Windows XP 

service pack one or later to be installed. 

 
CheckRemoteDebuggerPresent(GetCurrentProcess(), 

&pbIsPresent); 

 

if (pbIsPresent) { 

   MessageBox(NULL, L"Debugger Detected Via 

CheckRemoteDebuggerPresent", L"Debugger Detected", 

MB_OK); 

} else { 

   MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

Appendix: CheckRemoteDebuggerPresent.sln 

C. OutputDebugString 

The OutputDebugString anti-debugging method requires 

Microsoft Windows 2000 or newer to operate.  The 

OutputDebugString function is sensitive to whether a 

debugger is attached to the running process and will return an 

error code if our process is not currently running under a 

debugger. To detect the presence of a debugger we can make a 

call to SetLastError() with an arbitrary value, followed by a 

call to OutputDebugString(). If the arbitrary value remains 

when we check GetLastError() then we know that the 

OutputDebugString() was successful and the process is being 

debugged. 

 

DWORD Val = 666; 

SetLastError(Val); 

OutputDebugString(L"anything"); 

if (GetLastError() == Val) { 

   MessageBox(NULL, L"Debugger Detected Via 

OutputDebugString", L"Debugger Detected", MB_OK); 

} else { 

   MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger Detected", MB_OK); 

} 

Appendix: OutputDebugString.sln 

D. FindWindow 

The FindWindow detection method is different in that it 

does not specifically detect the presence of a debugger 

attached to our process; instead it retrieves a handle to the top-

level window whose class name matches a specified string. 

The common debuggers can be checked for by executing 

FindWindow with their class name as the parameter. The 

debugger WinDbg can be detected by calling FindWindow 

with a class name parameter of “WinDbgFrameClass”. In the 

code example below, a FindWindow call is made passing the 

string OLLYDBG, and the return handle is evaluated.  

 
Hnd = FindWindow(L”OLLYDBG”, 0); 

if (hnd == NULL) { 

  MessageBox(NULL, L”OllyDbg Not Detected”, L”Not 

Detected”, MB_OK); 

} else { 

  MessageBox(NULL, L”Ollydbg Detected Via OllyDbg 

FindWindow()”, L”OllyDbg Detected”, MB_OK); 

} 

Appendix: FindWindow.sln 

E. Registry Key 

Searching through the registry is another method we can 

used to detect the presence of a debugger. This method does 

not detect the attaching of a debugger to a target process, nor 

does it even indicate that a particular debugger is running. 

Instead this method simply indicates to the program that 

debugger is installed on the system. Since this technique has 

limited effectiveness, one should only use it as a supporting 

piece of information when deciding how to act upon other, 

more definitive detection mechanisms. There are three registry 

keys that can be used to indicate the installation of a debugger 

on the system. If either of the first two keys exists, OllyDbg 

has been configured as a shell extension to open target files by 

right clicking them.  
 

HKEY_CLASSES_ROOT\dllfile\shell\Open with 

Olly&Dbg\command 

HKEY_CLASSES_ROOT\exefile\shell\Open with 

Olly&Dbg\command 

 

If the final key has been set, the value of the Debugger 

name/value pair represents the debugger that has been 

configured as the just in time debugger for the system. In the 

event of a program crash, this is the debugger that will be 

called. Visual studio is represented as vsjitdebugger.exe while 

OllyDbg will be OLLYDBG.EXE. 

  



 

 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows 

NT\CurrentVersion\AeDebug Debugger= 

Appendix: Registry.sln 

F. NtQueryInformationProcess (ProcessDebugPort) 

  The NtQueryInformationProcess function is located 

within ntdll.dll. This undocumented call is used to retrieve 

information about a target process, including but not limited to, 

debugging related data. The function takes five parameters, 

the first two of which are of the most interest. The first 

parameter is the handle of the process to interrogate. In our 

example we use the value -1. This value tells the function to 

use the current running process. The second parameter is a 

constant value indicating the type of data we wish to retrieve 

from the target process. A call to this function using a handle 

to our currently running process, along with a 

ProcessInformationClass of ProcessDebugPort (0x07) will 

return the debugging port that is available. If the target 

process is currently being debugged, a port will already be 

assigned and that port number will be returned. If the process 

does not have a debugger attached, a zero value will return 

indicating that no debugger is currently attached. Since 

NtQueryInformationProcess is intended to be internal to the 

operating system, we have to use run time dynamic linking to 

be able to call this functionality. This is achieved by calling 

LoadLibrary and GetProcAddress and then executing the 

returned function pointer. 
 

hmod = LoadLibrary(L"ntdll.dll"); 

_NtQueryInformationProcess = GetProcAddress(hmod, 

"NtQueryInformationProcess"); 

 

status = (_NtQueryInformationProcess) (-1, 0x07, 

&retVal, 4, NULL); 

 

if (retVal != 0) { 

  MessageBox(NULL, L"Debugger Detected Via 

NtQueryInformationProcess ProcessDebugPort", 

L"Debugger Detected", MB_OK); 

} else { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger Detected", MB_OK); 

} 

Appendix: NtQProcessDebugPort.sln 

G. NtQueryInformationProcess (ProcessDebugFlags) 

The ProcessDebugFlags check also uses the 

NtQueryInformationProcess function call to detect a debugger. 

Instead of calling the function with a second parameter of 

0x07 (ProcessDebugPort), we submit the call with a second 

parameter value of 0x1f (ProcessDebugFlags).  When calling 

the function with this constant we are returned a value 

indicative of the debug flags that are present on the target 

thread.  The function returns the inverse of the 

NoDebugInherit value, which means that a return of 0 

indicates that a debugger is currently attached to the process. 

 
hmod = LoadLibrary(L"ntdll.dll"); 

_NtQueryInformationProcess = GetProcAddress(hmod, 

"NtQueryInformationProcess"); 

 

status = (_NtQueryInformationProcess) (-1, 31, 

&debugFlag, 4, NULL); // 31 is the enum for 

DebugProcessFlags and = 0x1f in hex 
 

if (debugFlag == 0x00000000) MessageBox(NULL, 

L"Debugger Detected via ProcessDebugFlags", 

L"Debugger Detected", MB_OK); 

 

if (debugFlag == 0x00000001) MessageBox(NULL, L"No 

Debugger Detected", L"No Debugger", MB_OK); 

 

Appendix: ProcessDebugFlags.sln 

H. NtSetInformationThread Debugger Detaching 

 The NtSetInformationThread call is a wrapper around the 

ZwQueryInformationProcess system call. This function takes 

four parameters. Of interest to us for anti-debugging purposes 

are the first and second parameters, which contain the target 

handle and the ThreadInformationClass constant. By setting 

this constant to 0x11 (ThreadHideFromDebugger) and 

submitting the call we can disconnect a debugger from our 

running process.  
 

lib = LoadLibrary(L"ntdll.dll"); 

_NtSetInformationThread = GetProcAddress(lib, 

"NtSetInformationThread"); 

  

(_NtSetInformationThread) (GetCurrentThread(), 0x11, 

0, 0); 

 

MessageBox(NULL, L"Debugger Detached", L"Debugger 

Detached", MB_OK); 

Appendix: NtSetInformationThread-Detach.sln 

I. Self Debugging with DebugActiveProcess 

One possible way that a process can determine if it is being 

run under a debugger is to attempt to debug itself. A process 

can only have one debugger attached to it at a time thus if a 

process is successful at debugging itself, then it can be sure 

that no other debugging tool is currently attached. To achieve 

this goal, a process must first create a child process. This child 

process can determine the process ID of its parent using any 

of a number of methods, at which point it will attempt to call 

DebugActiveProcess with its parent’s process ID as the target 

parameter. If this is successful we can be sure that the parent 

process is not currently being debugged. In our example code 

we spawn a child process of ourselves and pass in the process 

ID of the parent via command line arguments. The new 

process then checks for a debugger on the parent and if no 

debugger exists would continue to execute.  

 
pid = GetCurrentProcessId(); 

_itow_s((int)pid, (wchar_t*)&pid_str, 8, 10); 

wcsncat_s((wchar_t*)&szCmdline, 64, 

(wchar_t*)pid_str, 4); 

success = CreateProcess(path, szCmdline, NULL, NULL, 

FALSE, 0, NULL, NULL, &si, &pi); 

... 

success = DebugActiveProcess(pid); 

if (success == 0) { 

 printf("Error Code: %d\n", GetLastError()); 

 MessageBox(NULL, L"Debugger Detected - 

Unable to Attach", L"Debugger Detected", MB_OK); 

} 



 

 

if (success == 1) MessageBox(NULL, L"No Debugger 

Detected", L"No Debugger", MB_OK); 

Appendix: Self-Debugging.sln 

J. NtQueryInformationProcess (ProcessDebugObjectHandle) 

With the release of Windows XP, the debugging model was 

modified to create a handle to a debug object when a process 

is being debugged. It is possible to detect the existence of this 

handle by calling NtQueryInformationProcess with a second 

parameter of 0x1e. The 0x1e constant represents the value for 

ProcessDebugObjectHandle. If this function call returns a 

non-zero value we can be sure that the target process is being 

debugged and can act accordingly. 
 

hmod = LoadLibrary(L"ntdll.dll"); 

_NtQueryInformationProcess = GetProcAddress(hmod, 

"NtQueryInformationProcess"); 

 

status = (_NtQueryInformationProcess) (-1, 0x1e, 

&hDebugObject, 4, NULL); // 0x1e is the enum for 

ProcessDebugObjectHandle 

 

if (hDebugObject) MessageBox(NULL, L"Debugger 

Detected via ProcessDebugFlags", L"Debugger 

Detected", MB_OK); 

if (!hDebugObject) MessageBox(NULL, L"No Debugger 

Detected", L"No Debugger", MB_OK); 

Appendix: ProcessDebugObjectHandle.sln 

K. OllyDbg OutputDebugString() Format String 

An interesting bug exists in the current version of OllyDbg
1
. 

This particular debugger has a format string vulnerability 

within its handling of the OutputDebugString() function. 

When OllyDbg is attached to a process that calls 

OutputDebugString with a parameter of %s, the debugger will 

crash. To execute this vulnerability and anti-debugging 

method we simply make a call to 

OutputDebugString(TEXT(“%s%s%s%s%s%s%s”) within a 

structured exception handler. We safely handle the exception 

that is thrown within our code while simultaneously crashing 

any attached OllyDbg instance. 

 
__try { 

  

OutputDebugString(TEXT("%s%s%s%s%s%s%s%s%s%s%s")

, TEXT("%s%s%s%s%s%s%s%s%s%s%s"), 
TEXT("%s%s%s%s%s%s%s%s%s%s%s"), 

TEXT("%s%s%s%s%s%s%s%s%s%s%s") ); 

} 

__except (EXCEPTION_EXECUTE_HANDLER) { 

  printf("Handled Exception\n"); 

} 

Appendix: OllyDbgOutputDBString.sln 

L. SeDebugPrivilege OpenProcess 

When a process is run in or attached to by a debugger, the 

SeDebugPrivilege token is given to the target process. Some 

debuggers properly remove that permission and revert the 

                                                
1
 At the time of authoring the current version of OllyDbg is 

v1.10. 

process back to its original privilege state, while other 

debuggers fail to complete this step. If our process is being 

debugged by a debugger that does not properly revoke this 

privilege we can use this information to determine the 

debugger’s existence.  

To check for the existence of this privilege set the process 

simply tries to open a process such as csrss.exe with 

PROCESS_ALL_ACCESS rights. Normally our process 

would not be allowed to execute an OpenProcess() call with 

this as our target and the PROCESS_ALL_ACCESS rights; 

however, with the elevated privilege set granted by the 

debugger, we are able to open this file. 

The first step in this process is determining the process 

identifier for the csrss.exe process. This can be achieved a 

number of ways. In our sample code we use an undocumented 

function within ntdll called CsrGetProcessId(). By 

dynamically loading the ntdll.dll library and then finding the 

function address for this call we can execute this function. 

This function returns the PID for the running csrss.exe process. 

 
hmod = LoadLibrary(L"ntdll.dll"); 

_CsrGetProcessId = GetProcAddress(hmod, 

(LPCSTR)"CsrGetProcessId"); 

  

pid = (_CsrGetProcessId)(); 

 

After we have the PID for the target process we attempt to 

open this process using a call to OpenProcess() and a 

permission set of PROCESS_ALL_ACCESS. If the result of 

this function call is successful we know that we are running at 

an elevated privilege level and most likely have a debugger 

attached. 

 
HANDLE Csrss = 0; 

  

Csrss = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid); 

  

if (Csrss == 0) { 

  printf("Result is 0 Error Code: %d\n", 

GetLastError()); 

  MessageBox(NULL, L"No Debugger Detected or 

Debugger Does Not Assign SeDebugPrivilege", L"No 

Debugger", MB_OK); 

} 

if (Csrss != 0) MessageBox(NULL, L"Debugger Detected 

via OpenProcess SeDebugPrivilege", L"Debugger 

Detected", MB_OK); 

Appendix: SeDebugPriv.sln 

M. OllyDbg OpenProcess String Detection 

All versions of OllyDbg contain a static DWORD at a static 

offset within the running process. This is most likely 

implemented to ensure that OllyDbg does not attempt to 

debug itself by mistake. We can use this information to detect 

running instances of OllyDbg. We begin this process by 

walking the process list checking all images for the DWORD 

0X594C4C4F at offset 0x4B064B from the main thread base. 

There are numerous methods to list and analyze process on 

a system. We chose to gain access to the process list via the 

psapi library. This library can be included in the Visual Studio 

project by adding a dependency for psapi.lib. Using a call to 



 

 

EnumProcesses within this library we are able to enumerate 

all processes currently running on the system. We then pass 

each process in turn to the checkProcess() function. 
 

if ( !EnumProcesses( aProcesses, sizeof(aProcesses), 

&cbNeeded ) ) return; 

  

cProcesses = cbNeeded / sizeof(DWORD); 

for (i = 0; i < cProcesses; i++) { 

  flag = checkProcess( aProcesses[i] ); 

  if (flag == 1) { break; } 

} 

 

if (flag == 0) { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger Detected", MB_OK); 

} 

Appendix: OllyDbgStaticString.sln 

The checkProcess function opens the target process and 

checks the static offset for the DWORD that indicates a 

running OllyDbg process. If the value exists it returns one 

otherwise it returns zero. 
 

HMODULE hMod = NULL; 

 

HANDLE hProcess = OpenProcess( 

PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, 

processID ); 

  

if ( hProcess != NULL ) { 

  if (ReadProcessMemory(hProcess, (LPCVOID)0x4B064B, 

&value, (SIZE_T) 4, (SIZE_T *)&read)) { 

    if (value == 0x594C4C4F) { 

      MessageBox(NULL, L"Debugger Detected via 

Static OpenProcessString()", L"Debugger Detected", 

MB_OK); 

      return 1; 

    } 

  } 

} 

return 0; 

Appendix: OllyDbgStaticString.sln 

N. OllyDbg Filename Format String 

 OllyDbg also contains a flaw in the way it parses the name 

of the process it is attempting to debug. The parsing function 

contains a format string vulnerability that can cause OllyDbg 

to crash. By naming our process with a %s character we can 

cause OllyDbg to be unable to load and parse our file. While 

this is a simple method to implement, it is also trivial to 

bypass. An attacker can simply rename the file before loading 

it into the debugger. To combat this issue the process should 

programmatically check its own process name and ensure that 

it is the original file name that contains the format string 

character. 

To achieve the name check we use the function 

GetModuleFileName() to get access to our current running 

process name and then compare this against our expected 

value using wcsncmp(). 

 
GetModuleFileName(0, (LPWCH) &pathname, 512); 

filename = wcsrchr(pathname, L'\\'); 

 

if (wcsncmp(filename, L"\\%s%s.exe", 9) == 0) { 

  MessageBox(NULL, L"No Debugger Detected - Original 

Name Found", L"No Debugger Detected", MB_OK); 

} else { 

  MessageBox(NULL, L"Debugger Detected - File Name 

Modification Occured", L"Debugger Detected", MB_OK); 

} 

IV. DIRECT PROCESS AND THREAD BLOCK DETECTIONS 

When direct API calls are insufficient or an industrious 

debugger is hooking the calls and returning falsified data, the 

anti-debugging effort must go lower than the intervening 

methods and directly query the process and thread block 

information. Much of the results from the API models above 

can be retrieved by directly accessing details about the 

running process. Additionally, the lower and closer to the 

operating system our anti-debugging effort resides, the more 

difficult it will be to bypass.  

A. IsDebuggerPresent Direct PEB 

As described in section III. A., a basic anti-debugging 

technique is to use the Microsoft API IsDebuggerPresent to 

check for the existence of the BeingDebugged byte within the 

process environment block (PEB). Please refer to the 

reference section for a detailed listing of the PEB structure. A 

similar method is to bypass the API call and directly access 

the details of the running process block via the process 

environment headers. When a process is executed, a copy of 

the executable code as well as all associated header 

information is stored in memory. This header information can 

be queried directly, without the help of an API, to verify the 

value within the BeingDebugged byte. 

Multiple methods exist to access the information stored 

within the PEB. The easiest way is to use built in Microsoft 

API calls to retrieve a pointer to the data stored within the 

PEB. A call to NtQueryInformationProcess with a second 

parameter of ProcessBasicInformation will return a pointer to 

the process information block (PIB) structure for the target 

process. Again please refer to the references section for a link 

to a detailed listing of the PIB structure. Once we have a 

pointer to the PIB structure we reference the PebBaseAddress 

member of the PIB structure to gain a pointer to the PEB 

structure. Finally the BeingDebugged member of the PEB 

structure is compared against a value of one to determine if 

we are running within a debugger. 
 

hmod = LoadLibrary(L"Ntdll.dll"); 

_NtQueryInformationProcess = GetProcAddress(hmod, 

"NtQueryInformationProcess"); 

 

hnd = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, 

GetCurrentProcessId()); 

status = (_NtQueryInformationProcess) (hnd, 

ProcessBasicInformation, &pPIB, 

sizeof(PROCESS_BASIC_INFORMATION), &bytesWritten); 

 

if (status == 0 ) { 

  if (pPIB.PebBaseAddress->BeingDebugged == 1) { 

    MessageBox(NULL, L"Debugger Detected Using 

PEB!IsDebugged", L"Debugger Detected", MB_OK); 

  } else { 

    MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger Detected", MB_OK); 

  } 



 

 

} 

Appendix: IsDebuggerPresent-DirectPEB.sln 

B. IsDebuggerPresent Set/Check 

As noted in the IsDebuggerPresent method, the process 

environment block holds a byte that indicates the debugging 

status of the running process. This byte, called the 

BeingDebugged byte, contains a non-zero value if the target 

process is being debugged. Many debuggers and anti-

debugging detection plugins will hook the IsDebuggerPresent 

API call and always return a zero value to the requesting 

process. In this fashion a debugger can hide from the target 

process IsDebuggerPresent calls. It is possible to detect these 

hooks by setting the BeingDebugged byte to an arbitrary value 

and then issuing an IsDebuggerPresent function call. If the 

arbitrary value that was previously set is returned from 

IsDebuggerPresent, then the function is not hooked, however 

if we are returned a zero, we know that the process is running 

under a debugger that is attempting to hide its existence.  
 

hnd = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, 

GetCurrentProcessId()); 

status = (_NtQueryInformationProcess) (hnd, 

ProcessBasicInformation, &pPIB, 

sizeof(PROCESS_BASIC_INFORMATION), &bytesWritten); 

 

if (status == 0) { 

  pPIB.PebBaseAddress->BeingDebugged = 0x90; 

} // Sets the BeingDebugged Flag to arbitrary value  

 

retVal = IsDebuggerPresent(); // Retrieve value 

if (retVal != 0x90 ) { 

  MessageBox(NULL, L"Debugger Detected Using 

PEB!IsDebugged", L"Debugger Detected", MB_OK); 

} else { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger Detected", MB_OK); 

} 

Appendix: IsDebuggerPresent-SetCheck.sln 

C. NtGlobalFlag 

Processes, when started under a debugger, run slightly 

differently than those started without a debugger attached. In 

particular, debugged processes create memory heaps in a 

different fashion than those not being debugged. The 

information that informs the kernel how to create heap 

structures is stored within the PEB structure at offset 0x68. 

When a process is started from within a debugger, the flags 

FLG_HEAP_ENABLE_TAIL_CHECK (0x10), 

FLG_HEAP_ENABLE_FREE_CHECK (0x20), and 

FLG_HEAP_VALIDATE_PARAMETERS (0x40) are set for 

the process. We can use this information to determine if our 

process was started from within a debugging tool by 

referencing the value located at offset 0x68 within the PEB 

structure. If the bits corresponding to 0x70 (the sum of the 

above flags) are set then we can be certain of our debugging 

status. 
 

hmod = LoadLibrary(L"Ntdll.dll"); 

_NtQueryInformationProcess = GetProcAddress(hmod, 

"NtQueryInformationProcess"); 

 

hnd = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, 

GetCurrentProcessId()); 

status = (_NtQueryInformationProcess) (hnd, 

ProcessBasicInformation, &pPIB, 

sizeof(PROCESS_BASIC_INFORMATION), &bytesWritten); 

 

value = (pPIB.PebBaseAddress); 

value = value+0x68; 

printf("FLAG DWORD: %08X\n", *value); 

 

if (*value == 0x70) { 

 MessageBox(NULL, L"Debugger Detected Using 

PEB!NTGlobalFlag", L"Debugger Detected", MB_OK); 

} else { 

 MessageBox(NULL, L"No Debugger Detected", 

L"No Debugger Detected", MB_OK); 

} 

Appendix: NtGlobalFlag.sln 

D. Vista TEB System DLL Pointer 

This anti-debugging technique is unique to Microsoft 

Windows Vista. When a process is started without a debugger 

present, the main thread environment block (TEB) contains a 

pointer to a Unicode string referencing a system DLL such as 

kernel32.dll. The pointer is located at offset 0xBFC in the 

TEB structure and is followed directly by the Unicode string 

at offset 0xC00. If the process is started under a debugger, that 

system DLL name is replaced with the Unicode string 

“HookSwitchHookEnabledEvent”. 

To use this technique, the anti-debugging function should 

first check that it is running on the Windows Vista operating 

system. After confirming the operating system revision, the 

technique should locate the thread information block (TIB) by 

using the following code: 

 
void* getTib() 

{ 

  void *pTib; 

  __asm { 

    mov EAX, FS:[18h] //FS:[18h] is the location of 

the TIB 

    mov [pTib], EAX 

  } 

  return pTib; 

} 

 

Once the location of the TIB is found, the offset 0xBFC is 

read and the pointer checked. If this value is 0x00000C00 we 

then read the string at offset 0xC00 and compare this value to 

the Unicode string “HookSwitchHookEnabledEvent”. We 

check the pointer to ensure that we have a string located in the 

pointed to address and as a second level of assurance for the 

accuracy of this method. If we pass this final test we can be 

sure that our process was started from within a debugger. 

 
wchar_t *hookStr =      

_TEXT("HookSwitchHookEnabledEvent"); 

 

strPtr = TIB+0xBFC; 

 

delta = (int)(*strPtr) - (int)strPtr; 

if (delta == 0x04) { 

   if (wcscmp(*strPtr, hookStr)==0) { 

      MessageBox(NULL, L"Debugger Detected Via Vista 

TEB System DLL PTR", L"Debugger Detected", MB_OK); 



 

 

    } else { 

      MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

    } 

} else { 

   MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

Appendix: Vista-TEB-SystemDLL.sln 

E. PEB ProcessHeap Flag Debugger 

There are additional flags within the PEB structure that are 

used to indicate to the kernel how heap memory should be 

allocated. In addition to the NtGlobalFlag, the ProcessHeap 

Flag can also be used to determine if a process was started 

with a debugger attached. By dereferencing a pointer to the 

first heap located at offset 0x18 in the PEB structure, we can 

then locate the heap flags which are located at offset 0x10 

within the heap header. These heap flags are used to indicate 

to the kernel that the heap was created within a debugger. If 

the value at this location is non-zero then the heap was created 

within a debugger.  
 

base = (char *)pPIB.PebBaseAddress; 

procHeap = base+0x18; 

procHeap = *procHeap; 

heapFlag = (char*) procHeap+0x10; 

last = (DWORD*) heapFlag; 

 

if (*heapFlag != 0x00) { 

  MessageBox(NULL, L"Debugger Detected Using PEB 

Process Heap Flag", L"Debugger Detected", MB_OK); 

  } else { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger Detected", MB_OK); 

} 

Appendix: ProcessHeap.sln 

F. LDR_Module 

As described in the NtGlobalFlag and PEB ProcessHeap 

Flag anti-debugging methods, processes that are created from 

within a debugger use a modified heap creation algorithm 

when compared to those processes created without a debugger 

attached. When allocating a heap, while under a debugger, the 

DWORD 0xFEEEFEEE is created within the memory 

segment. This occurs because when heaps are created under a 

debugger, an alternate heap creation algorithm is used that 

allows for heap corruption detection and heap validation to 

occur. This value can be used as a signature to determine if a 

heap, and therefore a process, was created while under the 

control of a debugger. The easiest method to analyze a heap 

within a process is to look at the LDR_Module that is pointed 

to by the PEB. The LDR_Module contains information 

regarding the modules loaded by the binary. This module is 

created inside of a heap when the process is started and should 

exhibit the debugging DWORD if the process was created 

within a debugger. Below is a memory dump of the end of the 

LDR_Module in our sample code. The 0xFEEEFEEE 

DWORD is repeated four times at the end of the heap block. 

 
00252e98  abababab abababab 00000000 00000000 

00252ea8  000d062b 00ee14ee 00250178 00250178 

00252eb8  feeefeee feeefeee feeefeee feeefeee 

 

To analyze the LDR_Module for this signature string we 

locate the start of the LDR_Module by first accessing the PEB 

base address and then looking at offset 0x0C from the start of 

the PEB. The DWORD at 0x0C will be a pointer to the 

LDR_Module for our process.  

  
hmod = LoadLibrary(L"Ntdll.dll"); 

_NtQueryInformationProcess = GetProcAddress(hmod, 

"NtQueryInformationProcess"); 

 

hnd = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, 

GetCurrentProcessId()); 

status = (_NtQueryInformationProcess) (hnd, 

ProcessBasicInformation, &pPIB, 

sizeof(PROCESS_BASIC_INFORMATION), &bytesWritten); 

 

base = (pPIB.PebBaseAddress); 

ldr_module = base+0x0c; 

ldr_module = *ldr_module; 

 

After we have acquired the address of the LDR_Module we 

scan for the DWORD 0xFEEEFEEE by walking memory one 

byte at a time. We continue to scan until we have either found 

the signature string or we trigger an exception. If we find the 

signature we know the process was created with a debugger 

attached and if we trigger an exception, we have not found the 

signature and have walked past our allowable memory read 

section. We can safely handle the exception and continue 

execution of the program. When conducting the scan, we 

actually compare the data pointed to by our variable against 

the DWORD 0xEEFEEEFE to account for the little endian 

byte ordering of our x86 system.  

 
walk = ldr_module; 

 

__try { 

  while (*ldr_module != 0xEEFEEEFE) { 

  printf("Value at pointer: %08X\n", *ldr_module); 

    walk = walk +0x01; // walk is a byte 

    ldr_module = walk; 

   } 

 } 

__except (EXCEPTION_EXECUTE_HANDLER) { 

  flag = 1; 

  MessageBox(NULL, L"Debugger Not Detected", L"No 

Debugger Detected", MB_OK); 

} 

  

if (flag == 0) MessageBox(NULL, L"Debugger Detected 

via LDR_MODULE", L"Debugger Detected", MB_OK); 

Appendix: LDR_Module.sln 

V. HARDWARE AND REGISTER BASED DETECTION 

Hardware and register based detections differ from API and 

direct process and thread block detections in that the 

information that indicates the existence of a debugger is stored 

within the processors registers on the physical hardware itself. 

Instead of relying upon software discrepancies to indicate the 

existence of a debugger, one can directly query the hardware 

for the required information. 

A. Hardware Breakpoints 



 

 

A breakpoint is a signal that tells the debugger to cease 

operation of a process at a certain point. Debuggers can create 

breakpoints in target applications in multiple ways.  

Software breakpoints and hardware breakpoints facilitate 

similar results but operate differently. When a software 

breakpoint is inserted into a process, the debugger reads the 

instruction at the breakpoint location, removes the first byte of 

this instruction, and replaces it with a breakpoint opcode. The 

original byte is saved in a table and replaced when the 

breakpoint occurs, thus allowing the execution to continue.  

Hardware breakpoints are implemented in the processor 

hardware itself. The hardware contains registers dedicated to 

the detection of specific addresses on the program address bus. 

When the address on the bus matches those stored in the 

debug registers, a breakpoint signal, interrupt one (INT 1), is 

sent and the CPU halts the process. There are eight debug 

registers on the x86 architecture referred to as DR0 through 

DR7. Registers DR0 through DR3 contain the addresses on 

which we wish to break while DR7 contains bits to enable or 

disable each of the DR0 through DR3 breakpoints. DR6 is 

used as a status register to permit a debugger to know which 

debug register has triggered. 

A call to GetCurrentThreadContext is used to read the 

debug register information from the chip. We then compare 

the value in the registers to 0x00 to ensure that no hardware 

breakpoints are currently set in our process. 
 
hnd = GetCurrentThread(); 

status = GetThreadContext(hnd, &ctx); 

 

if ((ctx.Dr0 != 0x00) || (ctx.Dr1 != 0x00) || 

(ctx.Dr2 != 0x00) || (ctx.Dr3 != 0x00) || (ctx.Dr6 

!= 0x00) || (ctx.Dr7 != 0x00)) 

{ 

  MessageBox(NULL, L"Debugger Detected Via DRx 

Modification/Hardware Breakpoint", L"Debugger 

Detected", MB_OK); 

} else { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

Appendix: HardwareBreakpoints.sln 

B. VMware LDT Register Detection 

Recent research into virtual machine monitors and in 

particular VMware has yielded detection mechanisms that 

allow code running in the guest operating system to determine 

if it is running within a virtual machine or native on the 

system. While these methods are not specific to anti-

debugging, they are pertinent to the discussion due to the fact 

that a large portion of reverse engineering takes place within 

an emulated environment for security purposes, specifically 

malware related debugging and reverse engineering. Anti-

debugging code can be designed to only allow execution 

within a native operating system, or at a minimum, to help 

determine a heuristic value indicative of a debugging or 

reverse engineering session. 

Virtual machines must emulate certain hardware resources 

in order for guest operating systems to boot and function as 

expected. This includes emulating registers and other 

processor specific components within the virtual machine 

monitor. Of interest to the anti-debugging world is the fact 

that VMware, and presumably other virtual machine monitors, 

must emulate specific registers that can be read from an 

unprivileged level. The Interrupt Descriptor Table Register 

(IDTR), Global Descriptor Table Register (GDTR), and the 

Local Descriptor Table Register (LDTR), all exhibit this 

specific behavior. The data held in these registers is the 

memory location that is specific to that particular data 

structure. In other words a pointer to the required data is saved 

for use within the register. Since the virtual machine monitor 

must emulate these registers, the data pointers must point to 

different locations. Based on the returned locations for the 

interrupt, global, and local descriptor tables we are able to 

determine if the operating system is running within a virtual 

machine.  

GDTR and IDTR are unreliable sources of virtual machine 

detection due to the fact that multi-core processors, as well as 

multi-processor systems, will return different values 

depending on which of the processors is queried. The LDTR 

register, however, remains static across all cores and 

processors and is a reliable method of virtual machine 

detection. 

To determine if we are within a virtual machine we use the 

assembly function sldt to store the value of the LDTR into a 

variable. We then check the first two bytes of the return value 

and compare them against 0x00. If the host is running as a 

native operating system, these two bytes will always be 0x00. 

If the host is running under a virtual environment, these two 

bytes will differ as the local descriptor table is placed into a 

different memory location. 

 
unsigned char ldt_info[6]; 

int ldt_flag = 0; 

 

__asm { 

  sldt ldt_info; 

} 

 

if ((ldt_info[0] != 0x00) && (ldt_info[1] != 0x00)) 

ldt_flag = 1; 

  

if (ldt_flag == 1) MessageBox(NULL, L"Vmware 

Detected via ldt", L"Debugger Detected", MB_OK); 

if (ldt_flag == 0) MessageBox(NULL, L"No VMware 

Detected", L"No Vmware", MB_OK); 

Appendix: VMWareSLDT.sln 

C. VMware STR Register Detection 

Very similar to the LDT Register method of VMware 

detection is the STR method. This method uses the store task 

register (STR) to detect the existence of a virtual operating 

system. The STR, much like the LDT, GDT, and IDT contains 

a pointer to a piece of data that is specific to the process 

running on the hardware. Out of necessity, the virtual 

operating environment must relocate this information so that it 

does not overwrite the native system data. Once again this 

information can be retrieved from an unprivileged level. We 

can query the location of the stored task data and compare that 

against the normal expected values when operating in a native 



 

 

environment. When the data is outside of the expected bounds 

we can be sure that we are operating within a virtual 

environment.  

To execute this detection mechanism we make an assembly 

call to the str mnemonic and store the resultant data within the 

variable mem. If the first byte is equal to 0x00 and the second 

byte equal to 0x40, we can be confident that we are running 

within a VMware instance. 
 

unsigned char mem[4] = {0, 0, 0, 0}; 

 

__asm str mem; 

 

printf ("\n[+] Test 4: STR\n"); 

printf ("STR base: 0x%02x%02x%02x%02x\n", mem[0], 

mem[1], mem[2], mem[3]); 

 

if ((mem[0] == 0x00) && (mem[1] == 0x40)) 

  MessageBox(NULL, L"VMware Detected", L"VMWare 

Detected", MB_OK); 

else 

  MessageBox(NULL, L"No VMWare Detected", L"No 

VMWare Detected", MB_OK); 

Appendix: VMWareSTR.sln 

VI. TIMING BASED DETECTIONS 

Another class of anti-debugging is timing based detections. 

These methods use timing based functions to detect latency in 

the execution between lines or sections of code. When running 

code within a debugger it is very common to execute the code 

in a single step fashion. Single stepping is allowing the 

debugger to execute a single line (step into) or single function 

(step over) and then return control to the debugger. 

When the debugger is executing the code via single 

stepping, the latency in execution can be detected by using 

functions that return time or tick counts to the application. 

Two time function calls can be made in succession and the 

delta compared against a typical value. Alternatively, a section 

or block of code may be flanked by timer calls and again the 

delta compared against a typical execution time value. 

Four of the Microsoft windows primary time functions are 

used to demonstrate how these detections work. In the 

examples provided we have simply placed the timer calls 

directly in succession and compared the return value against a 

rough estimate of a reasonable latency time. 

A. RDTSC 

The time stamp counter is a 64 bit register that is part of all 

x86 processors since the creation of the original Intel Pentium. 

This register contains the number of processor ticks since the 

system was last restarted.  The x86 assembly language 

Opcode RDTSC was formally introduced with the Pentium II 

and was undocumented until then. To access this value from C 

code we use the function __rdtsc. Our example takes the 

results of the two calls to __rdtsc and compares the delta to a 

constant value of 0xff. This is an arbitrary value that returned 

results with a high level of accuracy when used to detect 

single step debugging. 

 
i = __rdtsc(); 

j = __rdtsc(); 

if (j-i < 0xff) { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} else { 

  MessageBox(NULL, L"Debugger Detected Via RDTSC", 

L"Debugger Detected", MB_OK); 

} 

Appendix: RDTSC.sln 

B. NTQueryPerformanceCounter 

Modern processors also include hardware performance 

counters. These performance counters are registers that store 

counts of hardware related activities within the processor. The 

value of the hardware performance can be queried using the 

function QueryPerformanceCounter. We use a nearly identical 

technique to other timing methods and compute a delta of two 

calls to QueryPerformanceCounter. If this delta is within a 

reasonable threshold amount our process is not running within 

a debugger in single step mode. Again we use an arbitrary 

value of 0xff for our latency threshold. 
 

QueryPerformanceCounter(&li); 

QueryPerformanceCounter(&li2); 

 

if ((li2.QuadPart-li.QuadPart) > 0xFF) { 

  MessageBox(NULL, L"Debugger Detected via 

QueryPerformanceCounter", L"Debugger Detected", 

MB_OK); 

} else { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

Appendix: NTQueryPerformanceCounter.sln 

C. GetTickCount 

The GetTickCount API functions provided by kernel32.dll 

return the number of milliseconds that have elapsed since the 

system was last restarted. This value wraps at 49.7 days. The 

primary difference between this and other timing methods is 

that due to the return value being in milliseconds, the 

threshold value is much lower. In our example case we set the 

threshold to 0x10 in order to detect single step debugging 

efforts. 

 
li = GetTickCount(); 

li2 = GetTickCount(); 

  

if ((li2-li) > 0x10) { 

  MessageBox(NULL, L"Debugger Detected via 

QueryPerformanceCounter", L"Debugger Detected", 

MB_OK); 

} else { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

Appendix: GetTickCount.sln 

D. timeGetTime 

Like GetTickCount, the timeGetTime function call returns 

a time value in milliseconds. In the case of timeGetTime we 

are returned the system time as opposed to the elapsed time 

since the last system restart. The timeGetTime function is part 

of the WinMM library and must be added to a Visual Studio 



 

 

project as a dependency. Again we use the same method of 

comparing a delta to a reasonable threshold to detect single 

stepping of our process. 

 
li = timeGetTime(); 

li2 = timeGetTime(); 

  

if ((li2-li) > 0x10) { 

  MessageBox(NULL, L"Debugger Detected via 

QueryPerformanceCounter", L"Debugger Detected", 

MB_OK); 

} else { 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

VII. MODIFIED CODE DETECTION 

Self referencing code can be used to determine if 

modifications to our process have been made. When a 

software based breakpoint is place into a process, a byte of the 

operating code is overwritten with a special instruction that 

causes the processor to trigger a break point exception that is 

then trapped and handled by the debugger. By using self 

referencing code to scan for instruction modifications, it is 

possible to check for instances of software breakpoints on a 

running process. 

A. CRC Checking 

The CRC checking method of anti-debugging uses 

techniques similar to self modifying code; however instead of 

modifying our code we simply take a CRC or hash value of 

the target code block to ensure that no changes have taken 

place. Using this method we can ensure that no software 

breakpoints have been placed into our tested code segment at 

the time of the CRC computation. 

The CRC checking method is typically implemented via a 

CRC function that takes as inputs pointers to locations within 

memory. The first parameter is the address of the start of 

memory, usually a function pointer, and the second address is 

normally the range of memory to compute the CRC value for.  

In our example, the memory range is computed by 

subtracting the address of the function following our target 

function from the address of our target function itself. The 

result of this computation is the length of the function we wish 

to determine a CRC value for. The line “original_crc = 

CRCCCITT((unsigned char*) &antidebug, 

(DWORD)&runmycode-(DWORD)&antidebug, 0xffff, 0);” 

shows a call to the CRC function with a start address of the 

function antidebug and a length computation resulting from 

the delta between the address of runmycode() and antidebug(). 

Alternative hash or CRC algorithms could be used in place of 

the CRCCCITT one chosen for our example. 

 
void antidebug(int pass) 

{ 

  printf("Location of runmycode = %08X and antidebug 

= %08X\n", &runmycode, &antidebug); 

  if (pass == 1) { 

    original_crc = CRCCCITT((unsigned char*) 

&antidebug, (DWORD)&runmycode-(DWORD)&antidebug, 

0xffff, 0); 

  } else { 

    the_crc = CRCCCITT((unsigned char*) &antidebug, 

(DWORD)&runmycode-(DWORD)&antidebug, 0xffff, 0); 

  } 

  return; 

} 

 

void runmycode() 

{ 

  if (the_crc != original_crc) { 

    MessageBox(NULL, L"Debugger Detected via CRC", 

L"Debugger Detected", MB_OK); 

  } else { 

    MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger Detected", MB_OK); 

  } 

  return; 

} 

Appendix: CRCScan.sln 

Once we have a working function to determine the CRC of 

a target code region, we can run the method and compare the 

results against an expected hardcoded CRC value. 

Alternatively, our anti-debugging check can run the CRC scan 

at multiple times throughout the program and compare the 

results against the previous executions. If the CRC value 

changes there is a high probablity that a software breakpoint 

has been inserted into the target function or code range.  

One point of note with regard to self referencing code is to 

be sure that your Visual Studio project has the incremental 

linking option disabled. Self referencial code using direct 

function addressing, as in our model, will not work properly 

when incrementally linked due to the use of “jump thunks” 

that redirect program flow using a jump table to the actual 

function code. Incremental linking uses a table of pointers to 

reference functions and will cause the function as we have 

written in our proof of concept to fail.  

VIII. EXCEPTION BASED DETECTION 

Exception handling based detection relies upon the fact that 

a debugger will trap certain exceptions and not properly pass 

them on to the process for internal consumption. In some 

debuggers, there may be a configurable option to ignore or 

otherwise return the exception handling to the process, but 

many times this is not enabled by default. If the debugger 

doesn’t pass the exception back to the process properly this 

can be detected within the process exception handling 

mechanism inside of the process and acted upon.  

Microsoft Windows uses a chain of exception handlers 

designed to trap exceptions before they cause a fatal crash of 

the process or operating system. The exception chain consists 

of one more vectored exception handlers, followed by the 

structured exception handler chain, and finally the unhandled 

exception filter is implemented to catch any exceptions that 

have fallen through the other methods. The following figure, 

created by Joe Jackson [3], graphically depicts the flow of 

exceptions. 

 



 

 

 

Figure 1: Exception Handling Chain [3] 

A. INT 3 Exception (0XCC) 

The basic operation of a general debugger is to use a call to 

interrupt 3 (INT 3) to trigger a software breakpoint. Hardware 

breakpoints, as discussed previously use a different interrupt 

value to generate the breakpoint exception. INT 3 generates a 

call to trap in the debugger and is triggered by opcode 0xCC 

within the executing process. When a debugger is attached, 

the 0xCC execution will cause the debugger to catch the 

breakpoint and handle the resulting exception. If a debugger is 

not attached, the exception is passed through to a structured 

exception handler thus informing the process that no debugger 

is present. 

 
int flag = 0; 

 

__try { 

  __asm { 

    int 3; 

  } 

} 

__except (EXCEPTION_EXECUTE_HANDLER) { 

  flag = 1;  

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

 

if (flag == 0) MessageBox(NULL, L"Debugger Detected 

Via Int3", L"Debugger Detected", MB_OK); 

Appendix:INT3.sln 

B. INT 2D (Kernel Debugger Interrupt) 

Similar in method to INT3, the INT 2D mnemonic is used 

to access the kernel debugging system. This call creates an 

exception record and then raises an exception that is trapped 

by kernel debuggers. We can use this method from ring 3 as 

well since the call will eventually filter to a ring 3 debugger if 

no kernel debugger exists. The code to execute this anti-

debugging check is identical to the INT 3 method listed above 

with the only exception being the int 3 assembly call is 

replaced with int 2dh. See appendix INT2d.sln for full source 

code. 

C. ICE Breakpoint 

Yet another method in which a breakpoint can be triggered 

and the resultant exception inspected is the ICE Breakpoint 

method. This method uses an undocumented opcode 

nicknamed the ICE Breakpoint to cause a break state in the 

same fashion as the INT 3 and INT 2D methods. The ICE 

Breakpoint is intended to be used with a specific subset of 

microprocessors; this method is also identical to the previous 

interrupt based methods. By executing the opcode 0xF1 we 

can generate a breakpoint that will be trapped by an attached 

debugger. Once again, we use a structured exception handler 

to determine if the exception occurs or is handled by the 

debugger. See appendix ICEBreak.sln for full source code. 

D. Single Step Detection 

When a process is executing, it is possible to tell the thread 

to generate a single step exception 

(EXCEPTION_SINGLE_STEP) after every executed 

instruction. This indicator is stored within the trap flag bit of 

the EFLAGS register. We can read this register by pushing the 

EFLAGS onto the stack with a pushfd instruction. We then set 

the trap flag bit using a logical OR instruction. Finally we 

save the EFLAGS by popping the data off the stack with the 

popfd instruction. When this series of commands is executed, 

a single step exception will be generated after each 

instruction. If a debugger is attached to our process, the 

debugger will intercept the exception thus skipping our 

structured exception handler and indicating to our process that 

a debugger is attached. 

 
int flag = 0; 

 

//Set the trap flag 

__try { 

  __asm { 

    PUSHFD; //Saves the flag registers 

    OR BYTE PTR[ESP+1], 1; // Sets the Trap Flag in 

EFlags 

    POPFD; //Restore the flag registers 

    NOP; // NOP 

  } 

} 

__except (EXCEPTION_EXECUTE_HANDLER) { 

  flag = 1; 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

if (flag == 0) MessageBox(NULL, L"Debugger Detected 

Via Trap Flag", L"Debugger Detected", MB_OK); 

Appendix: SingleStep.sln 

E. Unhandled Exception Filter 

When an exception occurs within a process executing on 

the Microsoft Windows operating system, there is a pre-

defined set of exception handlers that may be executed. If 

none of the exception handlers are configured to accept the 

incoming exception, the final handler is called the unhandled 

exception filter. This filter is the catch all for exceptions that 

do not meet the criteria for any other handling mechanism. 

Using a Microsoft supplied API, we can change the call back 

function for the unhandled exception filter to a piece of code 

of our choosing. 

When a debugger is in place, it inserts itself above the 

unhandled exception filter catching unhandled exceptions 

prior to the final filter being executed. As such, the debugger 



 

 

will intercept exceptions before our assigned call back 

function allowing us to determine that a debugger is attached 

to our process. In our example the exception that we generate 

crashes the application when run under a debugger due to the 

fact that the debugger does not handle the exception, instead 

allowing it to execute. When the same code is run without a 

debugger attached, the registered unhandled exception filter 

will catch the exception and safely continue program 

execution. 

The first step in executing this anti-debugging method is to 

set the call back function for an unhandled exception filter. 

This call back function is registered by a call to the 

SetUnhandledExceptionFilter() function as demonstrated 

below. This is then directly followed by inline assembly code 

that causes a divide by zero error to trigger.  

 
int flag = 0; 

SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_F

ILTER)exHandler); 

__asm { 

  xor eax, eax; 

  div eax; 

} 

MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

 

Our callback function simply handles the exception, resets 

the default unhandled exception filter and continues 

execution. The function exHandler() is as follows: 

 
LONG WINAPI exHandler(PEXCEPTION_POINTERS 

pExecpPointers) 

{ 

// Process will CRASH if a debugger is in place 

SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_F

ILTER)pExecpPointers->ContextRecord->Eax); 

pExecpPointers->ContextRecord->Eip += 2; 

return EXCEPTION_CONTINUE_EXECUTION; 

} 

Appendix: UnhandledExceptionFilter.sln 

F. CloseHandle 

Another trivial way to create an exception that will be 

trapped by a debugger is to generate an invalid handle 

exception. To generate this exception a call to CloseHandle() 

is executed with an invalid handle object. This call directly 

executes the syscall ZwClose, which in turn generates the 

exception. As is the case with most exception based anti-

debugging techniques, we encase the call within a __try and 

__except clause to be sure that our program can safely handle 

the exception. This particular anti-debugging mechanism is 

slightly different in that the call to CloseHandle() only raises 

the exception if a debugger is attached to the process. If a 

debugger is not attached, the call simply returns an error code 

and continues on. Due to this fact, if our code reaches the 

except block, we have detected a debugger. 

 
__try { 

  CloseHandle((HANDLE)0x12345678); 

} 

__except (EXCEPTION_EXECUTE_HANDLER) { 

  flag = 1; 

  MessageBox(NULL, L"Debugger Detected via 

kernel32!CloseHandle", L"Debugger Detected", MB_OK); 

} 

if (flag == 0) MessageBox(NULL, L"No Debugger 

Detected", L"No Debugger", MB_OK); 

Appendix: UnhandledExceptionFilter.sln 

G. Control-C Vectored Exception 

Vectored exception handlers are a recent feature addition to 

the exception handling mechanism in the Microsoft Windows 

operating system. Vectored exception handlers execute first in 

the exception handling chain and any number of VEH 

handlers can be chained together. Vectored exception handlers 

are explicitly added to your code and do not rely upon the 

__try and __except blocks. When creating vectored exception 

handlers, a linked list structure is used, allowing the process to 

install a theoretically unlimited number of exception handlers 

between the SEH and the final unhandled exception filter.  

When a console mode application is being executed under 

the control of a debugger, typing control-c will create an 

exception that can be detected and trapped using vectored 

exception handling. Normally a console application will create 

a signal handler to properly handle a call to control-c. If the 

process is not running under the context of a debugger, this 

signal handler is executed. By creating both a signal handler 

and an exception handler, it is possible to determine if the 

exception or the signal trap is executed. When running under 

Visual Studio debugger, the exception is thrown and executed 

within our process. 

 
AddVectoredExceptionHandler(1, 

(PVECTORED_EXCEPTION_HANDLER)exhandler); 

 

SetConsoleCtrlHandler((PHANDLER_ROUTINE)sighandler, 

TRUE); 

 

success = GenerateConsoleCtrlEvent(CTRL_C_EVENT, 0); 

Appendix: CNTRL-C.sln 

In the above lines of code we see three function calls of 

interest. In the first call we add a vectored exception handler 

which calls back to our function exhandler(). We then add a 

signal handler using SetConsoleCtrlHander() that calls back to 

our function sighandler(). And finally we generate a control-c 

call by executing GenerateConsoleCtrlEvent() with a first 

parameter of CTRL_C_EVENT. In the signal handler we 

simply handle the signal and continue executing, while in the 

vectored exception handler we take action as if a debugger is 

attached to our process. The code will operate differently 

based on the existence of a debugger. If the debugger is 

attached, the exception handler is triggered first and thus we 

know the process is being debugged. If the VEH does not fire, 

this is because no debugger is present and we handle the 

control-c event with our signal handler and continue execution.  

H. Prefix Handling 

An interesting issue occurs when debugging an application 

that uses inline assembly prefixes. Depending on which 

debugger is in use, these prefixes may not be properly 

executed. Some debuggers simply step over the byte 



 

 

following a prefix such as rep (repeat) and never actually 

execute the next instruction. This occurs in our example when 

the debugger causes the interrupt to not be executed and thus 

our exception is never run. In this manner we are able to 

detect that a debugger is attached to our process and act 

accordingly. Before implementing this anti-debugging method, 

one should be sure that their target audience debugger will be 

detected using this method. 

 
int flag = 0; 

__try { 

  __asm { 

    __emit 0xF3; // 0xF3 0x64 is PREFIX REP: 

    __emit 0x64; 

    __emit 0xF1; // Break that gets skipped if 

debugged 

  } 

} 

__except (EXCEPTION_EXECUTE_HANDLER) { 

  flag = 1; 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

} 

if (flag == 0) MessageBox(NULL, L"Debugger Detected 

Via Prefixing", L"Debugger Detected", MB_OK); 

Appendix: Prefix.sln 

I. CMPXCHG8B and LOCK 

The LOCK prefix in assembly is used to assert a special pin 

on the processor during the execution of the subsequent 

instruction. This pin is used to ensure that the processor is the 

only processor with access to a shared memory area. The 

LOCK prefix is used within multi-processor systems that may 

be affected by processors simultaneously modifying shared 

memory segments. There is a small subset of instructions that 

can legally follow a LOCK prefix.  

The CMPXCHG8B instruction is a compare instruction that 

compares values stored in specific registers with a target 

memory location. If the destination value matches the source 

value, the source is moved into the targeted memory location, 

if not, the destination memory data is loaded into the specific 

registers. 

The CMPXCHG8B and LOCK prefix instructions do not 

operate properly together. If they are executed in succession 

an invalid instruction error will be generated. If this code is 

run under a debugger, the debugger will catch the invalid 

instruction exception and terminate the running process. 

However; if no debugger exists, we can trap this exception 

and continue execution gracefully. To do this we set an 

unhandled exception filter and then execute the instructions in 

inline assembly. 
 
void error() 

{ 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger", MB_OK); 

  return; 

} 

 

... 

 

SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_F

ILTER) error); 

__asm { 

  __emit 0xf0; 

  __emit 0xf0; 

  __emit 0xc7; 

  __emit 0xc8; 

} 

Appendix: LOCKCMPXCHG8B.sln 

J. OllyDbg Memory Breakpoint 

The OllyDbg system handles some exceptions differently 

than others. If we protect a memory page with the 

PAGE_GUARD option and then try to execute within that 

memory page, OllyDbg will interpret the results as a memory 

breakpoint as opposed to a memory access exception. If 

OllyDbg is attached to our code when we execute from the 

protected memory region, a breakpoint will occur; however 

since an exception does not actually occurs, our structured 

exception handler will not be run. Without OllyDbg present, 

our exception handler will execute thus informing us that we 

are not inside of a debugger. 

The first step is in this anti-debugging method is to allocate 

a region of memory and fill it with return opcodes. This is 

done by calling VirtualAlloc() followed by a call to 

RtlFillMemory with a final parameter of 0xC3. We have to fill 

the region of memory with the return opcodes so that when 

OllyDbg continues after the breakpoint, it will execute from 

the target memory and return back to the original function. 

 
memRegion = VirtualAlloc(NULL, 0x10000, MEM_COMMIT, 

PAGE_READWRITE); 

RtlFillMemory(memRegion, 0x10, 0xC3); 

 

Next we add the PAGE_GUARD permission to our target 

memory region via a call to VirtualProtect(). 

 
success = VirtualProtect(memRegion, 0x10, 

PAGE_EXECUTE_READ | PAGE_GUARD, &oldProt); 

 

We then setup the structured exception handler and a 

function pointer to point to our memory region. We call the 

function pointer from within the __try part of our exception 

handler and then handle the resultant exception which would 

indicate we are not currently running under OllyDbg. 

 
myproc = (FARPROC) memRegion; 

 

success = 1; 

__try { 

  myproc(); 

} 

__except (EXCEPTION_EXECUTE_HANDLER) { 

  success = 0; 

  MessageBox(NULL, L"No Debugger Detected", L"No 

Debugger Detected", MB_OK); 

} 

 

Finally we determine if our exception handler was 

executed, and if it was not, we know that OllyDbg had 

executed the memory break point as opposed to the exception 

handler. This indicates that we are running under the presence 

of the debugger. 
 



 

 

if (success == 1) MessageBox(NULL, L"Debugger 

Detected Via OllyDbg Memory Breakpoint Detection", 

L"Debugger Detected", MB_OK); 

Appendix: OllyDbgMemoryBreakpoint.sln 

K. VMware Magic Port 

The virtual machine system VMware uses a “backdoor 

communication port” to be able to pass data between the host 

and the guest operating system. This communication port is 

used to read and write clipboard information, drag and drop 

between host and guest operating system, and allow file 

sharing between the two running systems. Communication on 

this port occurs by using two privileged x86 instructions, “IN” 

and “OUT”. These two instructions cannot normally be run 

from an unprivileged vantage point and would generate an 

exception; however when running under VMware, the 

emulation layer has implemented these particular instructions 

differently allowing them to be executed from an unprivileged 

vantage point. As such we can use these methods to detect if 

we are in a VMware virtual environment. 

In the inline assembly below we setup a call to the “IN” 

instruction by pushing a number of static values onto the stack. 

The first parameter of interest is the static string ‘VMXh’. 

This string is the “magic” value that must be present for the 

virtual machine to know that the request is legitimate. The 

value 10 is the particular VMware backdoor function that we 

wish to execute, while the value ‘VX’ is the default port that 

the VMware backdoor IO listens for. Finally we execute the 

“IN” call and analyze the return value. If the return value is 

zero, and we have reached our exception handler, we know 

that we are not running in a virtual session. If the return value 

is non zero and we do not reach out exception handler we are 

running inside of VMware. 
 

int flag = 0; 

 

__try { 

  __asm { 

    push edx; 

    push ecx; 

    push ebx; 

 

    mov eax, 'VMXh'; 

    mov ebx, 0; // This can be any value except 

MAGIC 

    mov ecx, 10; // "CODE" to get the VMware Version 

    mov edx, 'VX'; // Port Number 

 

    in eax, dx; // Read port 

    //On return EAX returns the VERSION 

    cmp ebx, 'VMXh'; // is it VMware 

    setz [flag]; // set return value 

 

    pop ebx; 

    pop ecx; 

    pop edx; 

  } 

} 

__except(EXCEPTION_EXECUTE_HANDLER) { 

  flag = 0; 

  MessageBox(NULL, L"No VMware Instance Detected", 

L"No VMware", MB_OK); 

} 

 

if (flag != 0) { MessageBox(NULL, L"VMware 

Detected", L"VMware Detected", MB_OK); } 

} 

Appendix: VMwareBackdoorIO.sln 

IX. CONCLUSIONS 

While we can be assured that this document has not 

discussed every anti-debugging method in existence we hope 

that a majority of the more useful methods have been 

demonstrated. We believe that presenting the information in a 

manner that is easy to digest for the mid-level developer will 

help to ease the burden of implementation and increase the 

frequency of use of techniques such as these. This information 

will hopefully increase the barrier of entry for would be 

software pirates and make the path to reverse engineering of 

legitimate code more difficult. 
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